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The use of the approximately normal distribution to 
describe the production of neutral particles 

G D Kaiser 
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Lancashire, UK 

Received 26 November 1973 

Abstract. The normal distribution in two variables is used in an approximate form to 
describe the data on the reactions pp, n - p  or n-n + ( j  negatively charged particles) + (neutral 
pions). I t  is shown that the model predicts a linear relationship between j and the mean 
number of neutrals. Modifications of the model are proposed in order to incorporate 
specific isospin conserving mechanisms. Comparisons are made with the work of other 
authors. Neutral strange particle production is discussed. 

1. Introduction 

There is now in existence a considerable body of data on the mean number of neutral 
pions ( n o ) j  produced in hadron-hadron collisions when it is known that j negatively 
charged particles have also been produced?. The most striking feature of these data is 
that plots of ( n o ) j  as a function of j are approximately linear (see figures 1 and 2). 

A number of papers have appeared attempting to  explain these data in terms of 
various isospin conserving mechanisms (Berger et al 1973, Horn and Schwimmer 1973, 
Drijard and Pokorski 1973). In this paper we intend to discuss a model that predicts the 
linearity of ( n o ) j  as a function of j for a large class of isospin conserving mechanisms. 
This model is the normal distribution in two variables 

1 (2 - 2pxy + y2)  
P ( j ,  no) = 27Ctjt0( 1 - p2)”Z 

P( j, no) is the probability that j negatively charged and no neutral particles will be pro- 
duced. Here x = ( j  - mj) / t j  and y = (no - mo)/ to  : m j ,  t j ,  mo, to and p are energy de- 
pendent parameters. 

t Data for pp interactions exist a t  the following values of PLAB (the laboratory momentum): 12,4GeV/c 
(Campbell er al 1973), 19 GeV/c (Scandinavian collaboration 1971). 70 GeV/c (French-Soviet collaboration 
1973), 205 GeV/c (Charlton et al 1972). 303 GeV/c (Dao et al1973). There are also results from the CERN ISR 
with 4s (the total energy) equal to 53 GeV (Fliigge et al 1972). Here, however, the apparatus did not cover the 
full 4n geometry. For n-p, data have been taken for PLAB equal to 25 GeV/c (Elbert et al 1970) and 40 GeV/c 
(Bucharest-Budapest-Cracow-Dubna-Hanoi-Serpukhov-Sofia-Tashkent-Tbilisi-Ulan-Bator-Warsaw col- 
laboration 1973a. b). In this last experiment data were also taken for n-n interactions. In this paper we shall 
also require data on u( j ) ,  the cross section for the production of j negatively charged particles. These are to be 
found in the work of the Soviet-French collaboration (1972) (70 GeV/c pp interactions), Charlton et al (1972) 
(205 GeV/c interactions) and Dao er al (1972) (303 GeV/c interactions). In all other cases the data on u ( j )  
and ( n o ) j  appear in the same paper with the exception of the ISR experiment for which there are no measure- 
ments of u( j ) .  
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The normal distribution and neutral particles 693 

The first authors to suggest the use of equation (1) were Parry and Rotelli (1973). 
We, however, shall do several things that these authors did not, as will become clear later 
in the paper. 

A trivial calculation tells us that 

in qualitative agreement with the data. We also note that the dispersion of the neutrals, 
( {n i ) j -  { n , ) ~ ) ” ’  is given by t0(1 -p2) ’12,  a constant. This feature of the model cannot 
be changed and, if measurements of the correlations between two no’s and charged pions 
are ever made, will provide a severe test of equation (1). 

In $ 2 we shall present a brief derivation of the model. In $ 3 we shall examine the 
approximations necessary in order to  describe data at energies that are less than asymp- 
totic and shall compare the model with the data that we have already listed, finding 
reasonable agreement. 

In 9 4 we shall use the model to describe data on the reaction 

PLAB -+ ( j  negatives) + neutral strange particles + anything, 

for which data exist with PLAB equal to 205 GeV/c (Charlton er ai 1973) and 303 GeV/c 
(Dao et al 1973). We shall find qualitative agreement. 

In 0 5 we shall discuss how to introduce an isospin conserving mechanism in a way 
that is consistent with the derivation of equation (1) given in $ 2. We shall show that, as 
PLAB becomes large, there is some evidence that a model in which most produced particles 
are one of a pair originating from the decay of an isoscalar resonance will describe the 
data, if we make the assumption that the production of these resonances is governed 
by the approximate normal distribution in one variable. In 5 6 we shall discuss several 
alternative ways of incorporating isospin conservation, but without success. 

In 4 7 we shall show that there is some evidence that, when j is fixed, ( n o > j  is a function 
of the available energy only and that it does not depend on the initial state. Finally, in 
$ 8 ,  we shall sufnmarize our conclusions and compare our work with that of other 
authors. 

2. Derivation 

The derivation of equation (1) is similar to that of the normal distribution in one variable 
alone as discussed by Kaiser (1972). The basic assumption is that, when two hadrons 
collide. they behave as if made up of a large, energy dependent number N of independent 
scattering centres. At each centre there is activity that may lead to the production of 
embryonic particles. In a final state interaction, these share the momentum carried by the 
individual centres, thus building real hadrons and determining their momentum distribu- 
tions (a subject that will not be studied in this paper). 

Let us suppose that at the vth centre j ,  negatively charged particles and n o ,  neutrals 
are produced with probabilities dictated by some distribution P,,( j , ,  no”) : using an 
obvious notation this has means mjv and mov,  variances t j ,  and to, and covariance p,. 
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We use the following definitions : 
N N 

mj = mjv mo = 1 mo" 
v =  1 v =  1 

v =  1 v = 1  

and 

Y = (no - mo)/to.  

We may now use the two-dimensional analogue ofthe central limit theorem ofprobability 
(Cramer 1966) which tells us that, subject to very general restrictions on Pv( jv ,  no"), and 
neglecting terms of order N -  ' I 2 ,  the distribution of produced pairs and neutrals is given 
by equation (1). 

There are certain theoretical advantages to be gained by using equation (1). For 
example, the appearance of the variable x means that it does not matter whether we use j 
(the number of produced negative particles), 2j (the number of produced charged par- 
ticles) or nEh (the total number of charged particles in the final state), since x remains the 
same for each. If we were using the Poisson distribution (say) the choice of variable then 
becomes important (see Kaiser 1972 for a detailed explanation). Another advantage 
is that the steps of our argument follow irrespective of whether we specify pions only, 
kaons only, pions plus kaons, and so on. (In a more detailed model, of course, the values 
of the parameters will depend on the choice that we make.) 

Another important feature of the model is that equation (1) should follow for any 
isospin conservation mechanism that does not violate the hypothesis that the scattering 
centres are independent. Clearly there is.a large class of mechanisms for which this is 
true. 

We also note that, integrating equation (1) over no to give the charged particle 
multiplicity distribution P( j ) ,  we find that 

(4) ~ ( j )  = exp( - x2/2)/J2.tj 

which is the normal distribution in one variable. 

3. Application 

Equation (1) cannot be used as it is because : (a) j 2 0 and no 2 0, whereas x and y should 
extend from - CO to  CO ; and (b)  J and no are discrete whereas x and y should be con- 
tinuous. We make the simplest possible approximation by truncating equation (1) : 

P( j ,  no) = exp[ - (x2 - 2pxy + y2)/2(1 - p2)]/zf ( j  2 0 and no 2 0) 
where 

Z' = 1 1 exp[ - (x2 - 2pxy + y2)/2(1 - p2)]  
j ro  n o r 0  
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(5) 

and 

P ( j ,  no) = 0 ( j  < 0 and/or no < 0). 

For a different procedure, see Parry and Rotelli (1973). 
We now find that 

m 1 
P( j )  = exp( - x2/2) C exp[ - ( y  - ~ x ) ~ / 2 ( 1 -  p2) ]  c n o = O  

(7)  
1 
X' = - exp( - x2/2)F( - Aj) 

where 

and, as t j  and to become large, (so that j / t j  and no/<o may be treated as continuous 
variables) 

F( -A~)  - ,,/%to(l-p2)1'2 e r f c ( - ~ ~ ) .  (9) 

Here erfc is the complementary error function. As A j  becomes large, erfc( - Aj) becomes 
equal to one. It is clear that, for small values of j ,  erfc( - Aj) may well differ substantially 
from one and hence P ( j )  as given by equation (7) will be somewhat smaller than given 
by the approximately normal distribution ( P ( j )  = exp( - x2/2)/C) used by Kaiser 
(1972, 1973). Similarly, in the same approximation as was used to derive equation (9) 

1 3c 

P50 to( 1 - p2)  l i 2  exp( - Aj2/2) - mo+---(j-mj)+ 
5 j  J2n erfc( - A ~ )  

Deviations from the straight line equation (2) will occur for small j .  The correction term 
is positive. As we shall see, in practice it turns out to be small for all values of j .  

In order to discover whether the model agrees with the data quantitatively we have 
carried out a least squares fit. As explained by Kaiser (1973) we exclude P ( j  = 0) 
(and hence ( n ) j = o )  from our fitting routine because the model seems to  require that we 
include in P(j = 0) part (but not all) of a(el), the elastic cross section. The parametriza- 
tion of this contribution to a(e1) as a function of s is discussed by Kaiser (1973). We 
merely point out that its value tends to zero as s -+ 00. Presumably a similar para- 
metrization could be used in this case if this were thought to be of sufficient interest. We 
also omit charge exchange processes in the n-p  case. 

In figure 1 we have plotted both Q ( j )  = ln[a( j)/a( j -  l)] (a convenient way of plotting 
the data) and ( n o ) j  as a function ofj. The best fits using equations (5), (6) and (lo), and 
renormalizingP(j)tocP(j)totakeaccount oftheomissionofP(j = O)(sothatcisanother 
free parameter), are shown as full curves. In table 1 we present the values of x 2  and the 
parameters for each energy. 

We see that the values of x2 per degree of freedom are variable. The fits are good at 
12.4 GeV/c, 19 GeV/c, 70 GeVlc and 300 GeV/c (for pp) and at 40 GeV/c for IT-p. When 
PLAB = 25 GeV/c, the fit to  the n - p  data is bad, due to the definite convex curvature of 
the data. When PrAB = 205 GeV/c, agreement with the pp data is only moderate. The 
bulk of the disagreement stems from the values of ( n o ) j  when j = 4 and j = 7. 
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We conclude that agreement with data is satisfactory, considering the simplicity of 
the model that we are using. We note that corrections to Q( j )  and to ( n o ) j ,  which should 
be straight lines if the normal distribution holds exactly, are not very important-curva- 
ture of the full curves in figure 1 is just noticeable. As expected, extrapolating Q ( j )  to 
j = 1 produces disagreement with the data, especially at low energies (note that o(e1) has 
been excluded from the experimental value of o(J = 0)). It is by no means obvious, 
however, that the expected disagreement between the experimental and theoretical 
values of ( n o ) j = o  has materialized except in the case of the 40 GeVic data. We note that 

n I  I 
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I 
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Figure 1. Plots of Q(j) = In[a(j)/o(j- l)] and ( n o ) ,  (defined in 5 I )  against j for the various 
data blocks. The full curves are the best fits from equations (5), (6) and (10). The chain curve 
arises from the combined use of binomial and normal distributions as in 5 5. pp scattering a t :  
( a )  12.4 GeV,’c, (b)  19 GeVic, (c) 70 GeVic, ( d )  205 GeVlc, ( e )  303 GeV/c; A p scattering at : 
(f) 25 GeV/c, (8) 40 GeVic; n-n  scattering at : ( h )  40 GeV/c. 

Table 1. Values of parameters and x 2  per degree of freedom for fits using equation (5). 

Initial 
state 

Laboratory 
momentum 
(GeVic) 

5, “0 50 P xz  per degree 
of freedom 

PP 
PP 
PP 
PP 
PP 
A-P 
n - P  
n - n  

12.4 
19 
70 

205 
303 
25 
40 
40 

0.13 _+ 0.01 
0.13 _+ 0.01 
1.04 f 0.05 
1.52 f 0.05 
1.94 f 0.1 0 
0.48 f 0.01 
0.87 k 0.03 
0.50 f 0.07 

1.06f0.01 0.85 f0.15 
1.30_+0.01 1.31 i 0 . 1 8  
2.00 k 0.02 2.22 f 0.1 8 
2.66 f 0.05 1.59 f 0.24 
2.98 f 0.07 2,45 _+ 0.34 
1.54f 0.01 1.93 5 0.12 
1.89 f 0.02 2.09 f 0.07 
2.18 k 0.03 1.27 f 0.10 

1.17 f 0.24 
0.40 f 0.02 
1.03 f0.33 
2.8 1 f 0.34 
3.27 f 0.40 
0.69 f 0.1 1 
1.10 f 0.07 
1.90+0.10 

- 0.1 3 f 0.1 1 
0.30 k 0.10 
0.88 f 0.02 
0.75 f 0.07 
0.67 f 0.01 
0.40 f 0.0 1 
0.56 f 0.04 
0.48 k 0.06 

2.5613 
4,6815 

13.7/10 
20.0/12 
17,6115 
26,119 
9,77110 

10.8717 

at low energies, where we expect the biggest disagreement (see Horn and Schwimmer 
1973), errors on ( n o ) j =  are large. At higher energies, we expect that the model will tend 
to P(j = 0;  inelastic) and that there will therefore be less difference here. 

We also note that, as we would expect from the way that ino and to are mixed together 
in equation (2), the data are not particularly sensitive to the values of these parameters 
(see table 1). 
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4. Neutral strange particles 

As explained in 8 2 ,  the model equation (1) should apply to any two kinds of particles. 
Data exist on the reaction pp -+ ( j  negatively charged particles)+(neutral strange 
particles) + (anything). The mean number of strange neutrals ( n,)j has been measured 
as a function o f j  for PLAB = 205 GeV/c and PLAR = 303 GeV/c (Dao er all973, Charlton 
et a1 1973). ( n J j  should be linearly related to j (equation (2)), or at least approximately so 
(equation (1 1)). We see from figures 2(b) and 2(c) that the data are certainly consistent 
with this predicted linearity, although they are not good enough to make a fit worthwhile. 

Figure 2. (a)  (no), against j(1SR). The chain curve is the fit using the model of 5 5, JS = 53 
GeV ; (b )  and (c) data on neutral strange particle production from experiments performed at 
NAL at 205 GeV/c and 303 GeV/c respectively. 

5. Fewer parameters 

It was pointed out in 5 2 that one of the strengths of the theory is that equations (1) and 
(2) follow for a variety of isospin conserving mechanisms, and irrespective of whether 
certain kinds of particles (eg kaons) are included or excluded ; that is, equations (1) and (2) 
are completely general. 

This generality, however, is a weakness when it comes to making quantitative fits 
to the data since, at each value of P L A B ,  we have five unrelated parameters m j ,  t j ,  m,, 
to and p. In what follows we want to attempt to produce a model which, while retaining 
the desirable features of the approximately normal distribution, has fewer parameters. 

In order to produce a model that is consistent with our starting point, we need to 
preserve the independence of the scattering centres that we have introduced in § 2. This 
means that isospin must be conserved at each centre, and not imposed overall. The 
simplest assumption that we can make is that particles are produced from the decay of 
resonances of isospin zero. To make a more simplifying assumption, pions are produced 
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in pairs, with a probability one third for a neutral pair and two thirds for a 71’11- pair. 
We assume that kaon and baryon pair production can be neglected. If the probability 
that n isoscalar resonances will be produced is PR(n), it follows that 

P ( j ,  no) P R ( ~ )  ( y )  (2/3)’(1/3Y0’2. (12) 

It is clear that this model cannot be expected to  work exactly since, for example, odd 
numbers ofpions cannot be produced. If, however, the bulk of neutral pions is produced 
in pairs, it is plausible that, as s becomes large, equation (12) will approximate the data for 
( n o ) j  in a reasonable manner. 

So far, we have done no more than Drijard and Pokorski (1973), who investigated 
equation (12) under the name ‘Q model’. Their principal result is that 

(13) 

The value of this equation is that the relationship between ( n o ) j  and j can be investigated 
if we know the experimental values of P( j ) .  The new element that we introduce is a 
knowledge of PR(n): we assume that the production of the isoscalar resonances is de- 
scribed by the approximately normal distribution, 

(no>j = ( j +  1)P(j+ l)/f‘(j). 

Since for large enough n the binomial distribution may be approximated by a normal 
distribution, the combination of equation (14) and equation (12) will, for high energies 
(when we expect mR and tR to be large), give us equation (1) plus a knowledge of m i ,  t j ,  
m,, to and p as functions of mR and tR,  thus reducing the number of parameters. 

On figure 1 we have displayed the best fit of equations (14) and (12) to P ( j )  only 
(excluding P ( j  = 0), as explained in 9 3). Once we have done this we can use equation 
(13) to  calculate ( n o ) j ,  also displayed on figure 1. We note the following features. 

(i) The fits to P ( j )  are extremely good; see table 2 for values of ,y2 per degree of free- 
dom. 

(ii) At dower values of P,,, the theoretical and experimental values of ( n o ) j  do not 
agree. 

(iii) As PLAB increases to 300GeV/c, the theoretical values of ( n o ) j  are in much 
better agreement with experiment. 

Table 2. Parameters and x 2  per degree of freedom for the model of 0 5. 

Initial PLAB mR 5 R  xz per degree 
state (GeV/c) of freedom 

PP 12.4 0.88 0.04 0.98 f 0.03 0.611 
PP 19 1.02 k 0.03 1.26 f 0.03 2 79/3 
PP 70 2.36 f 0.04 2.2 1 _+ 0.03 4.18,’s 
PP 205 3.72 _+ 0.10 2.96 f 0.08 8.317 
PP 303 4.23f0.12 3.51 k0.12 1 1,219 
n-P  25 1.65 f 0.02 1.50 f 0.01 6,3814 
n-P 40 1.89 f 0.08 2.29 & 0.03 10.5617 
71-n 40 2.33f0.12 2.26 _+ 0.06 3.9514 
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Our conclusion is that there is some evidence that the model described by equations 
(12) and (14) is able to  describe the data well at high energies. There is also a plausible 
qualitative explanation as to why the model fits P ( j )  well and ( n o ) j  not as well. We 
shall illustrate this explanation by constructing a simple idealized model. 

Let us assume that the independent centres of which we wrote in 9 2 are deposited 
in the centre of mass as a slowly moving fireball. There are also two leading particles. 
There is a probability q that one of these particles will remain a proton, and a probability 
1 - q that it will decay into a pno pair. It follows that, i f  PR(n) is now the probability that n 
isoscalar resonances will be produced from the central fireball 

for no even and n = j + n0/2, and 

for no odd and j + ( n o -  1)/2 = n. 
It follows that 

"0 

(15) 

(16) 

ie the expression for P ( j )  is the same as that derived from equation (12). On the other 
hand, 

even 

that is, 

( n o ) j  = (no)>12)+2-2q (18) 
where is the mean derived from equation (12) alone. That is, we have an ex- 
plicit model in which it is clear that P( j) is exactly as derived from equations (12) and (14), 
whereas ( n o ) j  is somewhat greater than given by the fits shown on figure 1-a correction 
that is qualitatively in the right direction to improve agreement with experiment. 

Variations on this sort of model are endless. For example, in the case of n -p  scat- 
tering we can allow the possibility of charge exchange between the two leading particles, 
or we can allow more complicated decays of leading fireballs. 

To conclude this section. we shall discuss the ISR data as displayed on figure 2(a). 
We have no data on P ( j )  when & = 53 GeV. On the other hand, Kaiser (1973) 
has discussed an energy dependent parametrization of P( j )  using the approximately 
normal distribution in one variable only and has shown that the model reproduces the 
data well when PLAR takes on values in the range 5-300 GeV/c (for pp scattering). We 
assume that the parametrization can be extrapolated to & = 53 GeV and use equation 
(13) to calculate ( n o ) j .  The result appears on figure 2(a). Agreement is not perfect. On 
the other hand, the experimental results were not taken with a 4n geometry, and, of 
course, the extrapolation of the parametrization is of doubtful validity. 
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6. Alternative models 

I t  is clear that the simple assumptions of$ 5 are too crude to give any more than qualitative 
agreement with the data. Possible modifications might be to  include isoscalar resonances 
decaying into more than two particles, or to assign charge and nonzero isospin to the 
scattering centres (a reasonable procedure if we wish to identify these centres with 
quarks). There is no obvious way in which we can proceed along these lines without 
introducing an excessive number of parameters, however. 

Another way in which we could proceed is to assume that the total number N of 
produced particles follows an approximately normal distribution 

P’(N) = exp[ - ( N  - m)/2rZ1/xN (19) 

where EN is the usual normalization factor. We then violate the spirit of the derivation 
given in 5 2 by assuming that isospin conservation is imposed in an overall way-for 
example, by assuming that when we have N pions and two nucleons, the probability 
that j of these are negatives and no neutrals is given by the Cerulus statistical weight, 
C ( N ;  j ,  no), details of the calculation of which are given by Cerulus (1960). Briefly. the 
pair of particles pp (for example) is in an isospin 111) state. The combination 
(nucleon + nucleon + N pions) spans an isospin space that contains as a sub-space several 
orthogonal )1,1) states. I t  is assumed that transitions to any of these states are equally 
likely. The calculation of the C ( N ; j ,  no) is then merely a matter of calculating the 
weights to be attached to each orthogonal j1 , l )  state for each combination of the values 
N ,  j and no. Hence 

On figure 3 we show the 70 GeV/c data only. plotting both Q ( j )  and ( n o ) ,  as a function 
of j .  On this graph we have drawn the following: (i) the fit of $ 2  (full curve); (ii) the fit 
of $ 5  (chain curve); and (iii) the best fit of equations (19) and (2) (dotted curve). We 
note that Q ( j )  is reproduced very well, but that ( n o ) j  is too big for most of the values 
of j .  These two features are characteristic of the model for all of the other data blocks. 
We also show: (iv) the fit of the Chow-Rix model (broken curve) in which equation (19) 
is replaced by a Poisson distribution before insertion into equation (U)) (Chow 1970, 
Chow and Rix 1970). It is clear that this model does not reproduce the data. 

Other models that we have tried include the replacement of equation (19) by the 
Feynman gas model of order 2 (Mueller 1971) which tells us that 

PT(N) = exp( - F ,  + F2/2)  

X [ ( f l y ’ + ( F 1 - F 2 P - 2  ( j - 2 ) !  -+ F2 2 . . .  (F,-Fz)’-2k ( j - 2 k )  ! k  ! [;)*+ . . .I. (21) 

This, combined with equation (20), leads to a fit approximately like that drawn as a 
dotted curve in figure 3. The Chew-Pignotti model (Chew and Pignotti 1968) which in 
essence uses the Poisson distribution for P,(N) together with a prescription for C ( N ;  j, no) 
which involves the exchange of alternate isospin zero and isospin one reggeons along a 
multiperipheral chain, produces a fit to Q(j)  similar to that of the Chow-Rix model. 

By stepping outside the original assumptions of $ 2, then, we find that it is not easy to 
improve agreement with experiment. 
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Figure 3. Q ( j )  against j and (no), against j for the 70 GeV/c pp data, with fits obtained by 
using various models : full curve, approximately normal distribution in two variables (4 2); 
chain curve, isoscalar resenance model (0 5 )  ; dotted curve, approximately normal distribu- 
tion with Cerulus weights; broken curve, Chow-Rix model. 

7. ( n o ) j  in pp and n-p scattering 

Kaiser (1974) used the normal distribution in one variable to describe charged particle 
multiplicity distributions in both pp and n-p scattering, ie 

(22) 
We wrote down simple, energy dependent parametrizations for m and 4 and showed that 
the data are such that, as s increases, P ( j )  appears to become independent of the initial 
state; that is, m in pp and n-p  scattering becomes the same function of s as s + CO. A 
similar statement applies to  {. An extension of this is that we expect (no)j  to become 
independent of the initial state as s + CO. 

In figure 4 we have plotted ( n o ) j  as a function of (Eav)- for various values of j, 
omitting j = 0 as we have done all through this paper. E,, is the available energy, & 
-the sum of masses of particles in the initial state. We have chosen (E,,)-' to provide a 
scale on which the experimental points are reasonably spaced. The data are well con- 
sistent with the hypothesis that, for fixed j, ( n o ) j  is a function of the available energy only. 
(The errors on the data are such that we ought not to  be too firm in concluding this, 
however .) 

Note that, for fixed j ,  the data suggest that ( n o ) i  rises as E,, increases. This is a 
conclusion that differs from that of the French-Soviet Union collaboration (1973) where 
it is tentatively concluded, by studying the 70 GeV/c and 205 GeV/c data only, that 
( n o ) j  may become constant as s + CO. 

'P( j) = exp[ - ( j  - m)'/2(']. 
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Figure 4. ( n o ) j  against (E , , ) - '  for various values of j .  I ,  pp scattering: *, n-p  scattering. 

8. Conclusion 

We have shown that the approximately normal distribution in two variables (equation 
(5)) is in reasonable agreement with the data on ( n o ) ,  and P ( j )  and that the model is in 
agreement with what data there is on neutral strange particle production. We have also 
shown that there is a simple derivation of equation (1) that is a natural extension of that 
used for the normal distribution in one variable as described by Kaiser (1972). In an 
attempt to reduce the number of parameters, it was demonstrated that there is some 
evidence that a model in which isoscalar resonances decay into pion pairs describes the 
data as s becomes large, and that several other simple attempts to achieve the desired 
reduction fail. 

As we have said, Parry and Rotelli (1973) are the authors who first proposed the use 
of equation (1) to describe the simultaneous production of two kinds of particle. Our 
work differs from theirs in several respects. We have given a derivation of equation (1). 
We have made an effort to assess the success of the model quantitatively. We have used a 
different truncation procedure (equation (5)). We have discussed ways of reducing the 
numbers of parameters. Finally, we have compared the model to data on neutral strange 
particle production. 

Our work also differs from that of other authors who consider the production of 
neutral particles (Berger et a1 1973, Horn and Schwimmer 1973, Drijard and Pokorski 
1973). In all cases, these papers deal with specific isospin conserving mechanisms, 
whereas we have demonstrated that, given the independence of scattering centres as 
described in 8 2, the linearity of as a function of j follows irrespective of the isospin 
conserving mechanism. In considering the model of 8 5, there are similarities to the 6 
model of Drijard and Pokorski (1973). These authors, however, are concerned with the 
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information about ( n o ) j  that can be gained from a knowledge of P ( j )  only whereas we 
are interested in the study of the normal distribution (equation (14)). 

Other authors (Berger et al 1973, Horn and Schwimmer 1973) investigate models 
in which, first of all, certain resonances (0 or p ,  say) are produced by Poisson-like mecha- 
nisms, or by inverse power law mechanisms which follow from fragmentation models. 
The decay of these resonances then provides a way of calculating ( n o ) ,  . Alternatively, 
pions are produced by Poisson-like or fragmentation type mechanisms and isospin is 
conserved in an average way. In short, our approach is distinguished by the use of the 
approximately normal distribution, which is not considered by any of the authors 
mentioned in this paragraph. (Horn and Schwimmer (1973). however, do point out that 
the gaussian distribution in two variables is a good approximation to some of their 
models.) 
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